Heat Transfer Mechanisms

* Heat: Is the form of energy that can be
transferred from one system to another as
a result of temperature difference.

e Heat Transfer: The science that deals
with the determination of the rates of such

energy transfers.



Types of Heat Transfer

 Conduction
 Convection
 Radiation



Conduction

Conduction is the transfer of energy from the
more energetic particles of a substance to the
adjacent less energetic ones as a result of
Interactions between the particles.

Conduction can take place in solids, liquids, or
gases.

In gases and liquids, conduction Is due to the
collisions and diffusion of the molecules during
their random motion.

In solids, i1t Is due to the combination of vibrations
of the molecules and the energy transport by free
electrons.



Rate of Heat Conduction

(Area)(Temperature difference)

Rate of heat conduction = —
Thickness

Or,
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where the constant of proportionality k represents the
thermal conductivity of the material, which is a measure of
the ability of a material to conduct heat.
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EXAMPLE 7-5 The Cost of Heat Loss through a Roof

The roof of an electrically heated home is & m long, & m wide, and 0.25 m
thick, and Is made of a flat layer of concrete whose thermal conductivity is
k=08Wm-“C (Fig. 1-24). The temperatures of the inner and the outer sur-
faces of the roof one night are measured to be 15°C and 4°C, respectively, for a
period of 10 hours. Determine (&) the rate of heat loss through the roof that
night and (b) the cost of that heat loss to the home owner If the cost of elec-
tricity is $0.08/kWh.

Concrete roof 0.25 m
8 m \

FIGURE 1-24

Schematic for Example 1-5.



SOLUTION The inner and outer surfaces of the flat concrete roof of an electri-
cally heated home are maintained at specified temperatures during a night. The
heat loss through the roof and its cost that night are to be determined.
Assumptions 1 Steady operating conditions exist during the entire night since
the surface temperatures of the roof remain constant at the specified values.
2 Constant properties can be used for the roof.

Properties The thermal conductivity of the roof is given to be Kk = 0.8
W/m - °C.

Analysis (&) Noting that heat transfer through the roof is by conduction and
the area of the roof is A = 6 m x 8 m = 48 m?, the steady rate of heat trans-

fer through the roof is determined to be
DB oswm-0yasmd > 2C _ 1600w = 1.69 kW
7 = (0. m - “C)(48 m~) 025 m 690 W = 1.6

(b) The amount of heat lost through the roof during a 10-hour period and its
cost are determined from

0 =0 Ar= (1.69 kW)(10 h) = 16.9 kWh

Cost = (Amount of energy)(Unit cost of energy)
= (16.9 kWh)($0.08/kWh) = $1.35

Discussion The cost to the home owner of the heat loss through the roof that
night was $1.35. The total heating bill of the house will be much larger since
the heat losses through the walls are not considered in these calculations.



Thermal Conductivity

 The thermal conductivity of a material
can be defined as the rate of heat transfer
through a unit thickness of the material per
unit area per unit temperature difference.



TABLE 1-1

The thermal conductivities of some
materials at room temperature

Material k, W/m - °C*
Diamond 2300
Silver 429
Copper 401
Gold 317
Aluminum 237

Iron 80.2
Mercury (I} 8.54
Glass 0.78
Brick 0.72
Water (1) 0.613
Human skin 0.37
Wood (oak) 0.17
Helium (g) 0.152
Soft rubber 0.13
Glass fiber 0.043
Air (g) 0.026
Urethane, rigid foam 0.026

TABLE 1-2

The thermal conductivity of an
alloy is usually much lower than
the thermal conductivity of either
metal of which it is composed

Pure metal or k, W/m - °C,
alloy at 300 K
Copper 401
Nickel 91
Constantan

(55% Cu, 45% Ni) 23
Copper 401
Aluminum 237
Commercial bronze

(90% Cu, 10% Al) Hhe

TABLE 1-3

Thermal conductivities of materials

vary with temperature

T. K Copper Aluminum
100 482 302
200 413 237
300 401 237
400 393 240
600 379 231
800 366 218

“Multiply by 0.5778 to convert to Btu/h - ft - °F.
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FIGURE 1-26
The range of thermal conductivity of
various materials at room temperature.



Thermal Diffusivity

* The thermal diffusivity represents how fast
heat diffuses through a material and Is
defined as

Heat conducted k .
0f = — — LITS/S)

Heat stored pC,

The productPCr represents heat capacity



EXAMPLE 1-6 Measuring the Thermal Conductivity of a Material

A common way of measuring the thermal conductivity of a material is to sand-
wich an electric thermofoil heater between two identical samples of the ma-
terial, as shown in Fig. 1-29. The thickness of the resistance heater, including
its cover, which is made of thin silicon rubber, Is usually less than 0.5 mm.
A circulating fluid such as tap water keeps the exposed ends of the samples
at constant temperature. The lateral surfaces of the samples are well insulated
to ensure that heat transfer through the samples is one-dimensional. Two
thermocouples are embedded into each sample some distance L apart, and a

differential thermometer reads the temperature drop AT across this distance
along each sample. When steady operating conditions are reached, the total
rate of heat transfer through both samples becomes equal to the electric power
drawn by the heater, which is determined by multiplying the electric current by
the voltage.

In a certain experiment, cylindrical samples of diameter 5 cm and length
10 cm are used. The two thermocouples in each sample are placed 3 cm apart.
After initial transients, the electric heater is observed to draw 0.4 A at 110V,
and both differential thermometers read a temperature difference of 15°C. De-
termine the thermal conductivity of the sample.

Cooling
<" fluid
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FIGURE 1-29

Apparatus to measure the thermal
conductivity of a material using two
identical samples and a thin resistance
heater (Example 1-6).




SOLUTION The thermal conductivity of a material is to be determined by en-
suring one-dimensional heat conduction, and by measuring temperatures when
steady operating conditions are reached.

Assumptions 1 Steady operating conditions exist since the temperature
readings do not change with time. 2 Heat losses through the lateral surfaces
of the apparatus are negligible since those surfaces are well insulated, and
thus the entire heat generated by the heater is conducted through the samples.
3 The apparatus possesses thermal symmetry.

Analysis The electrical power consumed by the resistance heater and con-
verted to heat is

W,=VI=(110V)(04A) =44 W
The rate of heat flow through each sample is
O=1w,=lx@daw)=22Ww

since only half of the heat generated will flow through each sample because of
symmetry. Reading the same temperature difference across the same distance
in each sample also confirms that the apparatus possesses thermal symmetry.
The heat transfer area is the area normal to the direction of heat flow, which is
the cross-sectional area of the cylinder in this case:

A =1mD? = 1 7(0.05 m)2 = 0.00196 m?

Noting that the temperature drops by 15°C within 3 ¢cm in the direction of heat
flow, the thermal conductivity of the sample is determined to be

AT QoL (22 W)(0.03 m)

) = kA = k= =
¢ r AAT _ (0.00196 m2)(15°C)

=224 W/m- °C

Discussion Perhaps you are wondering if we really need to use two samples in
the apparatus, since the measurements on the second sample do not give any
additional information. It seems like we can replace the second sample by in-
sulation. Indeed, we do not need the second sample; however, it enables us to
verify the temperature measurements on the first sample and provides thermal
symmetry, which reduces experimental error.



Convection

Convection is the mode of energy transfer between a
solid surface and the adjacent liquid or gas that is In
motion, and it involves the combined effects of
conduction and fluid motion.

The faster the fluid motion, the greater the convection
heat transfer.

In the absence of any bulk fluid motion, heat transfer
between a solid surface and the adjacent fluid is by
pure conduction.

The presence of bulk motion of the fluid enhances the
heat transfer between the solid surface and the fluid.



* Forced convection if the fluid is forced to flow
over the surface by external means such as a
fan, pump, or the wind.

« Natural (or free) convection if the fluid motion
IS caused by buoyancy forces that are induced
by density differences due to the variation of
temperature in the fluid (Fig. 1-32).

Forced Natural
convection convection

Air
N
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FIGURE 1-32

The cooling of a boiled egg
by forced and natural convection.




« Despite the complexity of convection, the rate of
convection heat transfer is observed to be
proportional to the temperature difference, and is
conveniently expressed by Newton’s law of
cooling as

O..w = hA (T, — T.) (W) (1-24)

where h is the convection heat transfer coefficient in W/m? - °C or Btu/h - ft” - °F,
A, 1s the surface area through which convection heat transfer takes place, T, is
the surface temperature, and T, is the temperature of the fluid sufficiently far
from the surface. Note that at the surface, the fluid temperature equals the sur-
face temperature of the solid.



TABLE 1-5

Typical values of convection heat
transfer coefficient

Type of
convection h, W/m? . °C*

Free convection of

gases 2-25
Free convection of

liquids 10-1000
Forced convection

of gases 25-250
Forced convection

of liquids 50-20,000
Boiling and

condensation 2500-100,000

*Multiply by 0.176 to convert to Btu/h - ft* - °F.



EXAMPLE 1-8 Measuring Convection Heat Transfer Coefficient

A Z2-m-long, 0.3-cm-diameter electrical wire extends across a room at 15°C, as
shown in Fig. 1-33. Heat Is generated in the wire as a result of resistance heat-
ing, and the surface temperature of the wire is measured to be 152°C in steady
operation. Also, the voltage drop and electric current through the wire are mea-
sured to be 60 V and 1.5 A, respectively. Disregarding any heat transfer by
radiation, determine the convection heat transfer coefficient for heat transfer
between the outer surface of the wire and the air in the room.

T, =15°C
154 ( 152°C
[ — ]
- 60V ]

FIGURE 1-33
Schematic for Example 1-8.



SOLUTION The convection heat transfer coefficient for heat transfer from an
electrically heated wire to air is to be determined by measuring temperatures
when steady operating conditions are reached and the electric power consumed.

Assumptions 1 Steady operating conditions exist since the temperature read-
Ings do not change with time. 2 Radiation heat transfer is negligible.

Analysis When steady operating conditions are reached, the rate of heat loss
from the wire will equal the rate of heat generation in the wire as a result of
resistance heating. That is,

O = Epneraica = VI = (60 V)(1.5A) =90 W
The surface area of the wire is

A, = wDL = w(0.003 m)(2 m) = 0.01885 m?
Newton's law of cooling for convection heat transfer is expressed as

Qmm-' = hA; {Ts — T.)

Disregarding any heat transfer by radiation and thus assuming all the heat loss
from the wire to occur by convection, the convection heat transfer coefficient is
determined to be

Q cony 90 W

_ — = 349 W/m?: °C
A(T,— T.)  (0.01885 m2)(152 — 15)°C ‘“

h

Discussion MNote that the simple setup described above can be used to deter-
mine the average heat transfer coefficients from a variety of surfaces in air.
Also, heat transfer by radiation can be eliminated by keeping the surrounding
surfaces at the temperature of the wire.



Radiation

« Radiation is the energy emitted by matter in the
form of electromagnetic waves (or photons) as a
result of the changes in the electronic
configurations of the atoms or molecules.

« Unlike conduction and convection, the transfer of
energy by radiation does not require the presence
of an intervening medium.

 In fact, energy transfer by radiation is fastest (at
the speed of light) and it suffers no attenuation in a
vacuum. This is how the energy of the sun
reaches the earth.



* |n heat transfer studies we are interested In
thermal radiation, which is the form of
radiation emitted by bodies because of their
temperature.

* |t differs from other forms of electromagnetic

radiation such as x-rays, gamma rays,
microwaves, radio waves, and television
waves that are not related to temperature.

» All bodies at a temperature above absolute
zero emit thermal radiation.



The maximum rate of radiation that can be emitted from a surface at an ab-
solute temperature T} (in K or R) is given by the Stefan-Boltzmann law as

Qcmil. max U-AST;: {\MJ (1-25)

where o = 5.67 X 107¥ W/m? - K* or 0.1714 X 10® Btu/h - ft> - R* is the
Stefan—Boltzmann constant. The idealized surface that emits radiation at this
maximum rate is called a blackbody, and the radiation emitted by a black-
body is called blackbody radiation (Fig. 1-34). The radiation emitted by all
real surfaces is less than the radiation emitted by a blackbody at the same tem-
perature, and is expressed as

O it = 80A,T? (W) (1-26)

where g is the emissivity of the surface. The property emissivity, whose value
is in the range 0 = g = 1, is a measure of how closely a surface approximates
a blackbody for which & = 1. The emissivities of some surfaces are given in
Table 1-6. .

qemil, max JT;-
T,=400K = 1452 W/m?
1t
r Blackbody (g = 1) \
FIGURE 1-34

Blackbody radiation represents the
maximum amount of radiation that
can be emitted from a surface

at a specified temperature.



TABLE 1-6

Emissivities of some materials

at 300 K

Material Emissivity
Aluminum foil 0.07
Anodized aluminum 0.82
Polished copper 0.03
Polished gold 0.03
Polished silver 0.02
Polished stainless steel 0.17
Black paint 0.98
White paint 0.80
White paper 0.92-0.97
Asphalt pavement 0.85-0.93
Red brick 0.93-0.96
Human skin 0.95
Wood 0.82-0.92
Soil 0.93-0.96
Water 0.96
Vegetation 0.92-0.96




Another important radiation property of a surface is its absorptivity o,
which is the fraction of the radiation energy incident on a surface that is ab-
sorbed by the surface. Like emissivity, its value is in the range 0 = a = 1.
A blackbody absorbs the entire radiation incident on it. That is, a blackbody is
a perfect absorber (ac = 1) as it is a perfect emitter.

In general, both £ and « of a surface depend on the temperature and the
wavelength of the radiation. Kirchhoff’s law of radiation states that the emis-
sivity and the absorptivity of a surface at a given temperature and wavelength
are equal. In many practical applications, the surface temperature and the
temperature of the source of incident radiation are of the same order of mag-
nitude, and the average absorptivity of a surface is taken to be equal to its av-
erage emissivity. The rate at which a surface absorbs radiation is determined
from (Fig. 1-35)

Qu'nsnrhcd = ':"-ancidu:nl I{\\M} (1-27)

where Q cigen 15 the rate at which radiation is incident on the surface and « is
the absorptivity of the surface. For opaque (nontransparent) surfaces, the
portion of incident radiation not absorbed by the surface is reflected back.

Qj ncident

Qre:t': (1-a) Qincldcnl

Qabs =u ancident
FIGURE 1-35

The absorption of radiation incident on
an opaque surface of absorptivity a.



When a surface of emissivity £ and surface area A, at an absolute tempera-
ture T 1s completely enclosed by a much larger (or black) surface at absolute
temperature T, separated by a gas (such as air) that does not intervene with
radiation, the net rate of radiation heat transfer between these two surfaces 1s
given by (Fig. 1-36)

de - E{‘”j‘}; {T? o ?—|.~::1L1rr:l f?"'r) (1-28)

Then the fotal heat transfer rate to or from a surface by convection and radia-
tion 1s expressed as

Surrounding
surfaces at

'

EUrr

leal - hwmhim:d‘q;; {T., - TI} {’\‘W’J

de = EGAJ{T? - Tgurr}

FIGURE 1-36

Radiation heat transfer between a
surface and the surfaces surrounding it.

Radiation is usually significant relative to conduction or natural convection,
but negligible relative to forced convection. Thus radiation in forced convec-
tion applications is usually disregarded, especially when the surfaces involved
have low emissivities and low to moderate temperatures.



EXAMPLE 1-9 Radiation Effect on Thermal Comfort

It is a common experience to feel “chilly” in winter and “warm” in summer in
our homes even when the thermostat setting is kept the same. This is due to the
so called “radiation effect” resulting from radiation heat exchange between our
bodies and the surrounding surfaces of the walls and the ceiling.

Consider a person standing in a room maintained at 22°C at all times. The
inner surfaces of the walls, floors, and the ceiling of the house are observed to
be at an average temperature of 10°C in winter and 25°C in summer. Determine
the rate of radiation heat transfer between this person and the surrounding sur-
faces if the exposed surface area and the average outer surface temperature of
the person are 1.4 mZ and 30°C, respectively (Fig. 1-37).

Room T J
surr —“\\
nC — .
1.4 m? Qra
FIGURE 1-37

Schematic for Example 1-9.



SOLUTION The rates of radiation heat transfer between a person and the sur-
rounding surfaces at specified temperatures are to be determined In summer
and winter.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer by convection
Is not considered. 3 The person Is completely surrounded by the interior sur-
faces of the room. 4 The surrounding surfaces are at a uniform temperature.
Properties The emissivity of a person is € = 0.95 (Table 1-6).

Analysis The net rates of radiation heat transfer from the body to the sur-
rounding walls, ceiling, and floor in winter and summer are

de, winter — EUAJ (Tsﬂf _ Ts.iltjrr WintE[}
= (0.95)(5.67 X 10 * W/m” - K*)(1.4 m?)
X [(30 + 273)* — (10 + 273)* K*

=152 W
and

Qrad, summer ECTA; (T;i _ Tsilrr, summm']
= (0.95)(5.67 X 1073 W/m? - K*)(1.4 m?)
X [(30 + 273)* — (25 + 273 K¢

=409 W

Discussion Note that we must use absolute femperatures in radiation calcula-
tions. Also note that the rate of heat loss from the person by radiation Is almost
four times as large in winter than it is in summer, which explains the “chill” we
feel in winter even if the thermostat setting is kept the same.



Heat Conduction Equation

Heat transfer has direction as well as magnitude.
The rate of heat conduction in a specified direction
IS proportional to the temperature gradient, which
IS the change in temperature per unit length in that
direction.

Heat transfer is a vector quantity.

The specification of the temperature at a point in a
medium first requires the specification of the
location of that point.

This can be done by choosing a suitable
coordinate system such as the rectangular,
cylindrical, or spherical coordinates, depending on
the geometry involved, and a convenient reference
point (the origin).



« The location of a point is specified as (X, Y, z) in
rectangular coordinates, as (r, , z) in cylindrical
coordinates, and as (I, , ) in spherical coordinates, where
the distances x, y, z, and r and the angles and are as
shown in Figure2-3.

(a) Rectangular coordinates

Z4

\\
~ P(r.¢
—— | ———
//f \I\
g l ~
{/ IZ N\
f‘“‘ ,

(b) Cylindrical coordinates

(¢) Spherical coordinates

FIGURE 2-3

The various distances

and angles involved when
describing the location of a point
in different coordinate systems.



Steady V/s Transient

* The term steady implies no change with time at any point
within the medium, while transient implies variation with
time or time dependence.

Time =2 PMm Time =5 rm

15°C 7°C 12°C 5°C

NV NV

@) Transient

©

-
I

[

(b) Steady-state
FIGURE 24
Steady and transient heat
conduction in a plane wall.



* |n the special case of variation with time but
not with position, the temperature of the
medium changes uniformly with time and
such heat transfer systems are called lumped
systems.

* A small metal object such as a thermocouple
junction or a thin copper wire, for example,
can be analyzed as a lumped system during a
heating or cooling process.



Multidimensional Heat Transfer

Heat transfer problems are also classified as being one-
dimensional, two-dimensional, or three-dimensional,
depending on the relative magnitudes of heat transfer
rates in different directions and the level of accuracy
desired.

Mostlyl heat transfer is three-dimensional.

|
|
} .
80°CH s ! 16°¢ Negligible
(x, y)! 2]
I * 70°C / <y
B | 65°C
®H5°C
so-C 3 |
| = \
T
| .
I $65°C Q
e I Pri uffllr\-'
. | «70°C Primary
‘ A direction of
/'v/ TTee- heat transfer
<
T FIGURE 2-6
FIGURE 2-5 Heat transfer through the window

Two-dimensional heat transfer of a house can be taken to be

in a long rectangular bar. one-dimensional.



 Fourier’s law of heat conduction for one-
dimensional heat conduction is defined as

: dTl
Qcond = _md_ (W) (2-1)
X
where k is the thermal conductivity of the material, which is a measure of the
ability of a material to conduct heat, and d7/dx is the temperature gradient,
which is the slope of the temperature curve on a 7-x diagram (Fig. 2-7).

Tll
dT
slope I <0
Tix)

00

Heat flow

X

FIGURE 2-7

The temperature gradient dT/dx 1s
simply the slope of the temperature
curve on a T-x diagram.



e General formulation for Fourier’s law can be

obtained as shown below

If n is the normal of the ismhémlal

surface at point P, the rate of heat conduction at that point can be expressed by -

Fourier’s law as

LT

0, = —kAZ- (W) (2-2)
. on

In rectangular coordinates, the heat conduction vector can be expressed in
terms of its components as

0,=0.i +0,j +0.k (2-3)

where 1_: F and k are the unit vectors, and 0. Q}., and Q: are the magnitudes
of the heat transfer rates in the x-, y-, and z-directions, which again can be de-
termined from Fourier’s law as

aT : aT : o aT
s Q, = —kA, I and Q.= —kA, e

O, = —kA, (2-4)

Here A,. A, and A_ are heat conduction areas normal to the x-, y-, and
z-directions, respectively (Fig. 2-8).

An isotherm

X
FIGURE 2-8
The heat transfer vector is
always normal to an isothermal
rface and can be resolved into its
omponents like any other vector.



Heat Generation

* Heat generation is a volumetric phenomenon.
* |t occurs throughout the body of a medium.

* The rate of heat generation in a medium is
usually specified per unit volume and is
denoted by, whose unit is W/m3

G= | gdv (W) (2-5)
b

In the special case of uniform heat generation, as in the case of electric resis-
tance heating throughout a homogeneous material, the relation in Eq. 2-3
reduces to G = gV, where ¢ is the constant rate of heat generation per unit

volume.



EXAMPLE 2-2 Heat Generation in a Hair Dryer

The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter of
D= 0.3 cm (Fig. 2-12). Determine the rate of heat generation in the wire per
unit volume, in W/cm?, and the heat flux on the outer surface of the wire as a
result of this heat generation.

Hair dryer

FIGURE 2-12

Schematic for Example 2-2.



SOLUTION The power consumed by the resistance wire of a hair dryer is given.
The heat generation and the heat flux are to be determined.

Assumptions Heat is generated uniformly in the resistance wire.

Analysis A 1200-W hair dryer will convert electrical energy into heat in the

wire at a rate of 1200 W. Therefore, the rate of heat generation in a resistance

wire is equal to the power consumption of a resistance heater. Then the rate of

heat generation in the wire per unit volume is determined by dividing the total

rate of heat generation by the volume of the wire,
G G 1200 W

T Ve = = 212 W/em®
§- vV, (wDHA)L ~ [w(0.3 cm)%4](80 cm) 12 W/em

Similarly, heat flux on the outer surface of the wire as a result of this heat gen-
eration is determined by dividing the fotal rate of heat generation by the surface
area of the wire,

G G 1200 W

j = = = — 15 0 W/em?2
9=A " 7DL_ w(03cm)80cm) - Wem




Heat Conduction in Large Plane Wall

Rate of heat| [ Rate of heat Rate of heat Rate of change
conduction | — | conduction | + [ =" ation | _ | of the energy
atx atx + Ax inside the content of the
o I o element element
or
"iEclcmfnl

) — 0. o+ G = '
Q.‘l Ql + Ax GLleu_nl At (2-6)

But the change in the energy content of the element and the rate of heat gen-
eration within the element can be expressed as

AEgement = Ei v ar — E; = mC(T, 4, — T) = pCAAMX(T,  , — T) (2-7)
= gAAx (2-8)

G,

clement gvx

lement

Substituting into Equation 2-6, we get

: : Tr+ﬁr - T:
Q.r - Q.r +act ._QAA-K = PCAJXT (2-9)

Dividing by AAx gives

+g=pCta_ "t (2-10)
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FIGURE 2-13

One-dimensional heat conduction
through a volume element
in a large plane wall.



Taking the limit as Ax — 0 and Ar — 0 yields

1 4 aT . aT
EE(I(A E) + g=pC ot (2-11)

since, from the definition of the derivative and Fourier’s law of heat conduc-
tion,

. Q.x+_.'_'.x - QI aQ a al
AmoTT AT _H_E( kA ox (2-12)
Noting that the area A is constant for a plane wall, the one-dimensional tran-
sient heat conduction equation in a plane wall becomes

Variable conductivity: i (kf—r J + g =pC F:—T (2-13)

The thermal conductivity k& of a material, in general, depends on the tempera-
ture T (and therefore x), and thus it cannot be taken out of the derivative.
However, the thermal conductivity in most practical applications can be as-
sumed to remain constant at some average value. The equation above in that
case reduces to

T & 14T

et r = (2-14)

Constant conductivity:

where the property a = k/pC is the thermal diffusivity of the material and
represents how fast heat propagates through a material. It reduces to the fol-
lowing forms under specified conditions (Fig. 2—14):

(1) Steady-state: d’T 8§

(alat = 0) dx2 tr=0 (2-19)
(2) Transient, no heat generation: 3T 14T (2-16)

g=0 ax? @ ot _
(3) Steady-state, no heat generation: d?T —0 2-17)

(a/at = 0 and ¢ = 0) dx*



Heat Conduction in a Long Cylinder

'Rate of heat Rate of heat' Rate of l_leat Rate of chang_e
conduction | — | conduction | + | Seneration | _ of the energy
at r atr + Ar inside the content of the
\ ' element element
or
: . . AE o ent
Qr - Qr' + Ar + Gcl-:mcnl = L:hn (2-18

The change in the energy content of the element and the rate of heat genera-
tion within the element can be expressed as

AEemen = Eicar — E,=mC(T, o, — T) = pCAANT, . 5 — T)) (2-19
G'lum-_‘ﬂl = gvclcmcnt = g,-«’-'! Ar (2-20

£

- r
0
sr+Ar¥ - Volume element

‘ _ T u—T FIGURE 2-15
Qr = O,y ar + gAAr = pCAAr — (221 One-dimensional heat conduction

through a volume element
in a long cylinder.

Substituting into Eq. 2-18, we get

where A = 2wrrL. You may be tempted to express the area at the middle of the
element using the average radius as A = 2m(r + Ar/2)L. But there is nothing
we can gain from this complication since later in the analysis we will take the
limit as Ar — 0 and thus the term Ar/2 will drop out. Now dividing the equa-

tion above by AAr gives

_ lQr'—ﬂ.r - Q

r Tioa— T,
+ 6= L
A Ar §=pC

(2-22)



Taking the limit as Ar — 0 and At — 0 yields
Laof,,oT\, . .oT
Eﬁ(kﬂﬁ)-Fg— pC BT, (2-23)

since, from the definition of the derivative and Fourier’s law of heat
conduction,

. 6 a0
jim Zrear—Qr 9@ _ o, of (2-:24)
Ar—0 Ar dr dr dr

Noting that the heat transfer area in this case is A = 2urL, the one-

dimensional transient heat conduction equation in a cylinder becomes

. . L a [, T 3T
AL - —— . I afr — i -
Variable conductivity. Far (..rh S ) + g=pC T, (2-25)

For the case of constant thermal conductivity, the equation above reduces to

11(,£")+£’_l£ (2-26)

rarlmarl 7% = @
where again the property a = k/pC is the thermal diffusivity of the material.
Equation 2-26 reduces to the following forms under specified conditions
(Fig. 2-16):

Constant conductivity:

(1) Steady-state: 1d{ dT ) § _

(8/dt = 0) T dr (’ o 2:21)
(2) Transient, no heat generation: 14 - aT ) _ 1T

(¢ =0) For (.’ T Y (2:28)
(3) Steady-state, no heat generation: d - dT ) _

(a/ot =0and g = 0) r (_" dr 0 (2:29)



Heat Conduction in a Sphere

Variable conductivity: — 2k 25 g=pC— (2-30)

which, in the case of constant thermal conductivity, reduces to

. 1 o ,0T\ . & 1aT
Constant conductiviry: ——|r-— —=—— 2-31
‘ : rlar\ dr, ﬂ o df ( )

where again the property e = k/pC is the thermal diffusivity of the material.
It reduces to the following forms under specified conditions:

(1) Steady-state: | d{ ,dT) g
s —_— ¥ + — = -
(alat = 0) redr (’ dr ] k 0 (2-32)
Y . ST ’ "
(2) Transient, - 1 o[ ,aT\ 14T
no heat generation. — | r-—|==-—= (2-33)
. ' r=drl dar | & ot
(g=10) ' /
(3) Steady-state,
no heat generation: d r2 (!T ] =0 or & T ar =0 (2-34)
‘ c:"r dr dri T dr

(a/at = 0and g = 0)

L/

Volume
element

FIGURE 2-17

One-dimensional heat conduction
through a volume element in a sphere.



Combine One-Dimensional Equation

e All three cases of one- dimentional can be

combined in to one equation which is

10 (agdT) 5 09T (2-35)
ol

rar ar |

where n = 0 for a plane wall, n = 1 for a cylinder, and n = 2 for a sphere. In
the case of a plane wall, it is customary to replace the variable r by x. This
equation can be simplified for steady-state or no heat generation cases as
described before.



EXAMPLE 24 Heat Conduction in a Resistance Heater

A 2-KW resistance heater wire with thermal conductivity Kk = 15 W/m - °C, di-
ameter D = 0.4 cm, and length L = 50 cm is used to boil water by immersing

it in water (Fig. 2-19). Assuming the variation of the thermal conductivity of the

wire with temperature to be negligible, obtain the differential equation that de-
scribes the variation of the temperature in the wire during steady operation.

Water

‘ SN — Resistance
k&// heater

FIGURE 2-19
Schematic for Example 2-4.




SOLUTION The resistance wire can be considered to be a very long cylinder
since its length is more than 100 times its diameter. Also, heat is generated
uniformly in the wire and the conditions on the outer surface of the wire are uni-
form. Therefore, it is reasonable to expect the temperature in the wire to vary in
the radial r direction only and thus the heat transfer to be one-dimensional.
Then we will have T = T(r) during steady operation since the temperature in
this case will depend on r only.

The rate of heat generation in the wire per unit volume can be determined
from

G G 2000 W

= = = = 0.318 X 10° W/m®
& Viie (wD¥4)L  [w(0.004 m)*/4](0.5 cm) o

Moting that the thermal conductivity is given to be constant, the differential
equation that governs the variation of temperature in the wire is simply
Eq. 2-27,

T dr J‘E +E=ﬂ'

1d ( dT) g
which is the steady one-dimensional heat conduction equation in cylindrical co-
ordinates for the case of constant thermal conductivity. Note again that the con-

ditions at the surface of the wire have no effect on the differential equation.



EXAMPLE 2-5 Cooling of a Hot Metal Ball in Air

A spherical metal ball of radius R is heated in an oven to a temperature of
600°F throughout and is then taken out of the oven and allowed to cool in am-
bient air at 7, = 75°F by convection and radiation (Fig. 2-20). The thermal
conductivity of the ball material is known to vary linearly with temperature. As-
suming the ball is cooled uniformly from the entire outer surface, obtain the dif-
ferential equation that describes the variation of the temperature in the ball

during cooling.

75°F

Metal ball

600°F

FIGURE 2-20

Schematic for Example 2-3.



SOLUTION The ball is initially at a uniform temperature and is cooled uni-
formly from the entire outer surface. Also, the temperature at any point in the
ball will change with time during cooling. Therefore, this is a one-dimensional
transient heat conduction problem since the temperature within the ball will
change with the radial distance rand the time . That is, T = T(r, ).

The thermal conductivity is given to be variable, and there is no heat genera-
tion in the ball. Therefore, the differential equation that governs the variation of
temperature in the ball in this case is obtained from Eqg. 2-30 by setting the
heat generation term equal to zero. We obtain

| H ﬂT HT



General Heat Conduction Equations
(Rectangular)

/ Rate of heat Rate of heat Rate of change
Rate of heat : .
i conduction generation | _ | of the energy
conduction at | — . - =
v and 7 atx + Ax, inside the content of
v s v+ Ay,andz + Az element the element
or
. . : . . : . _ AEgemen
Qr + Q1 + Q: - Q.r +Ax Q1 + Ay Q: + Az + Gﬁ:lumcnl - At (2-36)

Noting that the volume of the element is V..., = AxAyAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as

AE jomen = Eiar — E,=mC(T, 5, — T)) = pCAXAYAZT, , 4, — T)
G~ = gv'lcmﬂnl = gﬁlﬂ\‘ﬂf

element — e

Substituting into Eq. 2-36, we get

L . , Tponi— T
Qi+ 0y + 0. = Ouvne— Oy — Ocv st AAVAZ = pCAXAYAZ = —
Dividing by AxAyAz gives
1 Q,ini— O, 1 Q."—ﬁ.‘f B Q‘ 1 Q:—.ﬁ.: B Q% Lg— CTr—.-lJ - T
AvAz  Ax AxAz Ay AxAy Az ET P A

(2-37)

FIGURE 2-21

Three-dimensional heat conduction
through a rectangular volume element.



Noting that the heat transfer areas of the element for heat conduction in the
x, v, and z directions are A, = AyAz, A, = AxAz, and A, = AxAy, respectively,
and taking the limit as Ax, Ay, Az and A7 — 0 yields

ay \

Jy

L(ﬁfl 9 (Fk ;J'TJ —EZ_J(RE_J N Cﬂ” (2-38)

since, from the definition of the derivative and Fourier’s law of heat
conduction,

R N N O aT 3 (,oT

lim = = — = — ol

Ax—0 AyAz Ax AyAz dx  AyAz HI kﬁ}&f ﬂx k ax
) oaw — O, a0, /

lim —1 Qyiay ~ © -1 9 -1 _kﬁxﬁ oT\_ _ 9 (9T

Av—0 AxAz Ay AxAz dv  AxAz H}’ dy ﬂy dy
_ )a: — O, 90, /

im L Qevaz—Q: 1 90 1 i_ﬁﬁmﬂi:=_akﬁt
Az—0 AxAy Az AxAy dz  AxAydz\ <oz dz |\

Equation 2-38 is the general heat conduction equation in rectangular coordi-
nates. In the case of constant thermal conductivity, it reduces to
PT _&*T  &*T & 19T

1 : — + 2= 2-39
ol oy a2k @t (2-39)

where the property a = k/pC is again the thermal diffusivity of the material.



Equation 2-39 is known as the Fourier-Biot equation, and it reduces to these
forms under specified conditions:

1) Steady-state: S A A i A 4
(1) _ N + o+ o+ o+ 2= (2-40)
(called the Poisson equation) ax-  dy-  azr- Kk
(2) Transient, no heat generation: T, o°T , a°T _ 13T (2-41)
(called the diffusion equation) axt gyt azr Qoo
(3) Steady-state, no heat generation: a*T  a*'T = a'T
: ) . na_,ﬁ_.?:ﬂ (2-42)
(called the Laplace equation) ax-  dy-  dz°

Note that in the special case of one-dimensional heat transfer in the
x-direction, the derivatives with respect to y and z drop out and the equations

above reduce to the ones developed in the previous section for a plane wall
(Fig. 2-22).



Cylindrical

X = rcos &, y = rsin ¢, and I1=1
After lengthy manipulations, we obtain
laf, oaT\ , 1 o {, , aT " I A -
TW,.‘A; n +j—mﬁ(£ mh]+ HT:;+§;"—[1CE

(2-43)



Spherical

X = rcos & sin 6, y = rsin ¢ sin 6, and z=cos b
Again after lengthy manipulations, we obtain
1 a(, ,aT} | d [ aT" aT ) . coT
— E— | + — — | + — B
r=dr (k’ dr rlsin? @ {'j{i, ( .rj.[i, ] rlsin® rJH II:L sin H § H & F}'C ol



EXAMPLE 2-6 Heat Conduction in a Short Cylinder

A short cylindrical metal billet of radius /& and height £ is heated in an oven to
a temperature of 600°F throughout and is then taken out of the oven and al-
lowed to cool in ambient air at 7. = 65°F by convection and radiation. Assum-
ing the billet is cooled uniformly from all outer surfaces and the variation of the
thermal conductivity of the material with temperature is negligible, obtain the
differential equation that describes the variation of the temperature in the bil-
let during this cooling process.

P o

Metal 600°F T.=65F
billet |

FIGURE 2-25
Schematic for Example 2-6.



SOLUTION The billet shown in Figure 2-25 is initially at a uniform tempera-
ture and is cooled uniformly from the top and bottom surfaces in the zdirection
as well as the lateral surface in the radial r-direction. Also, the temperature at
any point in the ball will change with time during cooling. Therefore, this is a
two-dimensional transient heat conduction problem since the temperature
within the billet will change with the radial and axial distances rand z and with
time . Thatis, T = T(r, z, 1).

The thermal conductivity is given to be constant, and there is no heat gener-
ation in the billet. Therefore, the differential equation that governs the variation
of temperature in the billet in this case is obtained from Eq. 2-43 by setting
the heat generation term and the derivatives with respect to & equal to zero. We
obtain

1a(, aT\ , a(, aT\ _ .aT
Fﬁ("rﬁ)+a—z(kaz)_']cﬁ

In the case of constant thermal conductivity, it reduces to

1o ( 9T\ &T _1aT
rar\"or | T a2 T @t

which is the desired equation.



